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Thermal convection with spatially periodic boundary 
conditions: resonant wavelength excitation 

By R. E. KELLY A N D  D. PAL 
Mechanics and Structures Department, University of California, Los Angeles 

(Received 27 June 1977) 

ThermaI convection in a fluid contained between two rigid walls with different mean 
temperatures is considered when either spatially periodic temperatures are prescribed 
at the walls or surface corrugations exist. The amplitudes of the spatial non- 
uniformities are assumed to  be small, and the wavelength is set equal to the critical 
wavelength for the onset of Rayleigh-BCnard convection. For values of the mean 
Rayleigh number below the classical critical value, the mean Nusselt number and the 
mean flow are found as functions of Rayleigh number, Prandtl number, and modulation 
amplitude. For values of the Rayleigh number close to the classical critical value, the 
effects of the non-uniformities are greatly amplified, and the amplitude of convection 
is then governed by a cubic equation. This equation yields three supercritical states, 
but only the state linked to a subcritical state is found to be stable. 

1. Introduction 
I n  recent years, considerable interest has been shown in examining how the results 

of classical stability problems concerning steady flows contained between perfectly 
smooth boundaries are affected by temporal or spatial variations of the base state or 
boundaries. The recent review article by Davis (1976) gives information concerning 
the case when the variations are periodic in time. Not as much work has been done 
for the case when the variations are periodic in space, although the results would 
bear upon the importance of ignoring imperfections (e.g. roughness effects) when 
applying classical stability results to real situations, both in the laboratory and 
elsewhere. 

The present analysis is aimed a t  examining the effects of spatially periodic boundary 
conditions upon the Rayleigh-BBnard stability problem (namely, an unstably strat- 
ified, Boussinesq fluid contained between two smooth, horizontal walls of infinite 
extent with constant but unequal temperatures). Two types of variation in the 
boundary conditions are considered, namely, (i) bounding surfaces which are plane but 
have temperatures which vary periodically (about different mean values) with distance 
along the surfaces, and (ii) surfaces which have constant but unequal temperatures and 
are wavy, so that the gap size varies periodically in a direction parallel to the mean 
surface levels. 

Both cases are pertinent to stating how smooth conditions a t  a boundary must be 
in order that surface variations can be ignored in studies of thermal convection. The 
first case might also be relevant to estimating the extent to which well-defined initial 
disturbances (such as imposed by Chen & Whitehead 1968) affect stability boundaries, 
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etc., although our forcing is steady in time. The second case has some practical value 
in that one might want to make the boundary wavy if the mean Nusselt number 
could be increased (such a consideration seems to have motivated Watson & Poots 
(1971) in their study of how wavy boundaries affect laminar free convection flow 
between vertical walls). 

I n  both cases, the amplitude of the variation (8) is assumed to be small (in a sense 
to be defined more exactly later), and an expansion is made in terms of 8. The wave- 
number (k) of the periodic variation is assumed to be close to or equal to the critical 
wavenumber (k, = 3.1 17) characteristic of classical Rayleigh-BBnard convection, and 
so we refer to the present problem as involving resonant wavelength excitation. 
Results for the situation when the wavenumber of the boundary modulation is 
significantly different from k, will be reported elsewhere (Pal & Kelly 1978). 

When no variations occur along the boundaries, convection is possible only when 
the Rayleigh number ( R a )  is greater than the classical critical value (Ra, = 1707.8 
for two rigid surfaces). When such variations do occur, convection occurs even though 
the Rayleigh number based on the mean values is less than Ra,, and so the mean 
Nusselt number can vary with Ra. A mean flow can also be generated when a difference 
in phase is allowed between the variations occurring a t  the upper and lower boundaries, 
even though the forcing is stationary. That such a phenomenon is possible was sug- 
gested originally by Busse and Whitehead (see Busse 1972; Young, Schubert & 
Torrance 1972) during their studies of how moving thermal waves in an otherwise 
homogeneous fluid induce mean flows. We have calculated both mean Nusselt numbers 
and mean flow variations as functions of both Rayleigh and Prandtl numbers. 

We have used the subscript c in the above to denote the values of the critical 
Rayleigh number and wavenumber for the classical problem with uniform heating. 
Strictly speaking, there is no critical Rayleigh number for the present problem in the 
usual sense because convection occurs for all values of Ra,  and it should be borne in 
mind that the subscript c refers only to the numerical values associated with the 
classical problem. For Ra < Ra,, however, the convection has an amplitude only of 
0(8 ) ,  and we shall refer to  this regime as being that of ‘quasi-conduction’. As Ra 
approaches Ra,, the amplitude of convection increases greatly, however, and so it is 
still meaningful in a physical sense to define the ‘critical’ regime as being when 
Ra = Ra,. 

One might expect that a solution based on expanding in terms of S would become 
singular as  Ra -+ Ra, when k = kc. This was confirmed in a preliminary report of our 
research (Kelly & Pal 1976) where it was shown by means of an eigenfunction 
expansion that 

A singularity was also noticed by Watson & Poots (1971) in their study of convection 
in a vertical slot as the Grashof number approaches the usual critical value (they also 
expanded in terms of 6). A singularity also exists in Busse’s (1972) exact solution of 
the flow induced by internal heating in the form of a wave travelling between stress- 
free surfaces when one sets the frequency to zero, k = k,, and Ra = Ra,. 

We demonstrated previously that when Ra N Ra, nonlinear effects must be con- 
sidered and that the scaling for the amplitude (€) of convection can be determined 
from a model equation of the form 

E - 6Ra,/( Ra, - Ru). (1 .1)  

c3 = s{ (Ru-R~, ) /R~; ,C,}+~C, ,  (1.2) 
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where C, and C, are numerical constants (say, real and positive). For the quasi- 
conduction case when Ra 4 Ra, and S 4 1, the linear terms in (1.2) give the same 
result as (1.1). For S = 0 and Ra slightly greater than Ra,, (1.2) yields the well-known 
supercritical amplitude relation (Malkus & Veronis 1958) 

E = & {(Ra - Ra,)/Ra,C,}3. (1.3) 

Hence (1.2) yields the two limiting cases. For Ra = Ra,, it  is clear from (1.2) that 
E N O(6f) rather than zero as (1.3) states (or infinity, as (1.1) states). Relative to the 
quasi-conduction case when E - O(S), we can say that the convection is now con- 
siderably enhanced. Taking E - O(6f)  as a standard for the critical regime, we note 
that each of the terms in (1.2) is of equal magnitude when 

(Ra - Ra,)/Ra, N O ( S f ) ,  (1.4) 

which allows the critical regime to be defined more exactly. Of course, variation of the 
wavenumber away from the critical value will also affect the resonance phenomenon. 
An estimate of how close the wavenumber must be to the critical value is obtained by 
noting that the neutral curve for Rayleigh-BBnard convection behaves near Ra, as 

so Dhat, by use of (1.4),  we can say that resonance will occur within a neighbourhood 
of kc defined by 

k-k, N O(Si). (1.6) 

For the most part, we shall assume k = k,. However, in order to show the effects of 
wavenumber variation, we shall occasionally give the results of a more general analysis 
of the case when k + k, but (1.6) holds. The details will be omitted, however, for the 
sake of brevity. 

Our previous (1 976) investigation gave a detailed analysis of the critical regime 
only for the case of stress-free surfaces, an infinite Prandtl number fluid, and a non- 
uniform boundary condition consisting of a single thermal wave imposed a t  the lower 
surface. Also, the nature of the solutions to the cubic equation (1.2) was not explored. 
The present report gives a much more complete analysis of this regime, including the 
effects of rigid boundaries, finite Prandtl number, and the phase angle between simul- 
taneous forcing at the lower and upper boundaries. While this paper was being 
written, we received a preprint of the paper by Tavantzis, Reiss & Matkowsky (1 978), 
in which their theory of singular perturbations (see Matkowsky & Reiss 1977) was 
used to obtain results in a more systematic manner for the general problem discussed 
here (they consider the case of a bounded layer with stress-free boundaries and a 
rather arbitrary variable temperature imposed on one boundary). Also, after this 
paper was originally submitted for publication, we were made aware of work by 
Daniels (1 978) and Hall & VC'alton (1 978) €or the case of a bounded fluid layer with 
stress-free, constant temperature horizontal boundaries but with non-adiabatic end 
walls. Because this end-wall boundary condition can be viewed as being another kind 
of boundary imperfection, their results have qualitatively much in common with 
those reported by us and by Tavantzis et al. 

15-2 



436 R. E. Kelly and D. Pal 

2. Quasi-conduction regime 
For Ra sufficiently below Ra, so that (1.5) holds, we expect the amplitude of con- 

vection to be proportional to 6 for 6 < 1. An analysis based on this premise is given in 
this section. 

We measure distance in the horizontal and vertical directions by the variables 5 

and z (0  6 z 6 l) ,  respectively, which have been made non-dimensional on the basis 
of the average gap height H .  If the mean temperature of the upper surface is Fu and 
that of the lower surface is q, then the mean characteristic temperature difference is 
A T  = q - Tu. We choose to scale the temperature on the basis of A T  as 

T(x ,  Z) = Apia(%, 2). ( 2 . 1 )  

This means that we shall examine the effects of boundary modulation at  a fixed value 
of A T  and that 6 represents the magnitude of such variation relative to AT. This 
scaling is motivated by our basic interest in the effects of the boundary variations for 
the critical regime. The case with A T  = 0 is discussed in the appendix. 

We consider only two-dimensional convection because, for Ra < Rae, the con- 
vection is due only to the forcing a t  the boundaries, which is assumed to be periodic 
in the x direction. We therefore introduce a stream function @(x, z )  which we scale 
on the basis of the thermal diffusivity ( K )  and 6 as 

(2.2) 

For a boundary variation with a wavenumber k,  it  is convenient to use a new horizontal 
variable 

@(x, 2) = K q x ,  2) = K G Y ( X ,  2). 

2 = kx. (2.3) 

We also define a temperature relative to the conduction state (8 = 0 )  by 

G(2,  2) = ( q / A T )  - z + 6 0 ( 2 , ~ ) .  

a 2 0  a 2 0  ay.’ (z;; awe) 
a22 a22 a2 a2 a2 

( 2 . 4 )  

For a Boussinesq fluid, the governing equations for Y and 0 are then 

( 2 . 5 )  - + k z - - k -  = ka -____  
and 

where Ra is a Rayleigh number based on A T  and H ,  and Pr is the Prandtl number. 
The boundary conditions for each of the cases discussed in the introduction are as 

follows: (i) spatially periodic surface temperatures prescribed at  plane rigid boundaries, 

( 2 . 7 ~ )  

( 2 . 7 b )  

@(2 ,  0 )  = (q/AT) sin 2 = L sin 2,  

O ( 2 , l )  = (Fu/AT) sin (2  +,8) = U sin (2  +p),  
ayP ayP 

a2 a2 
- = - = O  at z = O , l ,  ( 2 . 7 ~ )  
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(ii) constant temperature wavy rigid boundaries, 

6 = (T/AP) at z = ct = 6L sin P, ( 2 . 8 ~ )  

6 = (pu/AF)  at z = cu = 1+6Usin(P++P), (2 .8b )  

_ -  _ -  - - 0 at z = c2(P)  and Cu(P). 
a2 8.2 ( 2 . 8 ~ )  

In  the above, ,8 is a phase angle, and L and U are numerical constants to be prescribed 
later. 

We now expand as 
O(2,Z) = 0,(2, 2) + &0,(P, z )  + .. .) (2.9a) 

and 
Y(2,z)  = Y , ( P ,  2) + &Y, (P ,  2) + . .., (2.9b) 

where the equations for 0, and Yl are given by (2.5) and (2.6) with the right-hand 
sides set equal to zero. For case (i), the boundary conditions for 0, and Y, are given 
by ( 2 . 7 ~ - c ) .  For case (ii), the conditions on 0, and Y, can be obtained from ( 2 . 8 ~ - c )  
by expanding 8 and Y about z = 0 and 1 in terms of 6, and then using (2.9a, b) ,  as 

0,(3,0) = Lsin2, 0,(2, 1) = U sin(2+/3), (2.10a) 

(2.10 b) 

Hence the boundary conditions are the same as in case (i) to order (6). 
We now redefine 0, so as to obtain homogeneous boundary conditions; let 

0 , ( P , z )  = {8,,(z)+L(i -z)}sin2+{(Bl,(z)+ Uz}sin(Z++P), (2.1 l a )  
and 

(2.11b) 

With this notation, the subscript 1 denotes an effect associated with a variable lower- 
wall condition, whereas the subscript u denotes an effect caused by the upper wall. 

012 = O12' = 0 at z = 0,1,  (2.12 a )  

= Ql, = 0 at z = 0,1, (2.12 b) 

Y , ( P ,  2) = Q&) cos 2 + Q l U ( Z )  cos (2  +P).  

The boundary conditions for both cases are then 

The following inhomogeneous equations are obtained: 

dA - 2 k 2 d 2  + k4Qlz - kRaOll = kRaL( 1 - z),  
dz4 dz 

d2Qlu d4QlU ~- 2k2 + k4Ql,, - kRaO,,, = kRaUz. 
dz4 dz 

( 2 . 1 2 4  

(2.13 a) 

(2.13 b) 

( 2 . 1 4 ~ )  

(2.14b) 
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FIGURE 1. Streamlines of O(S) convection cells for Ra = 300, k = kc = 2.221 (stress-free 
boundaries); (a )  p = O", (b)  p = go", ( c )  p = 180". 

At this point, an eigenfunction expansion was used by Kelly & Pal (1 970) in order 
to clarify the situation as Ra-tRa,. The emphasis here is on calculating the O(S) 
solution so as to be able then to calculate O(S2) mean quantities, and so the equations 
have been solved numerically. This has been done for k = kc, the critical wavenumber 
for Rayleigh-BBnard convection. The streamlines show an interesting dependence 
upon the phase angle@, as shown in figures 1 (a)-(c) for@ = O", 90" and 180", respectively, 
and L = U = 1. Although these streamlines are actually for the stress-free boundary 
case, they are also representative of the rigid surface case. For @ = O", closed cells 
appear with vertically oriented updrafts and downdrafts centred about the points of 
maximum and minimum wall temperatures, respectively. For @ = go", a pronounced 
tilt occurs in the cells. This tilt leads to a non-zero Reynolds stress and so to the 
occurrence of a mean flow at O(S2). For /3 = 180", it seems that a single cell cannot 
accommodate the boundary conditions, and a two-tier structure appears with two 
counter-rotating cells stacked on top of each other. For /3 = 270", the streamlines 
would be similar to figure 1 ( b ) ,  except that the tilt would be in the opposite direction. 

At O(S2), the effects of the variable boundary conditions upon mean quantities, 
such as heat transfer, are determined. The mean temperature distortion is given by 
the solution of 

( 2 . 1 5 4  

where an overbar denotes an average over a wavelength. Upon substitution from 
(2.11~) and (2.11b), we get 
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We note that the case p = &r is special in that s2 is then generated by the sum of 
terms forced by the lower wall plus terms forced by the upper wall (i.e. no interaction 
terms occur and only 'mean field' type terms remain). 

The mean flow Y2 is determined by 

or, after substituting from (2.11 b), 

(2.16 a )  

(2.16 b) 

The inhomogeneous quantity in (2.16b) is zero either if $ = 0 or 180" or if L or U 
is zero (i.e. if one surface is isothermal). For all of these cases, the O(6) convection 
cells have no tilt, and we can conclude immediately that no mean flow is generated, 
at least for the case of plane boundaries. 

The boundary conditions for case (i) are 

- d T  0, = 2 = o at z = O , I ,  
dz  

(2.17 a )  

T2(0) = Q2(l) = 0. (2.17 b) 
This last condition requires the volumetric flux to  be zero, as would occur in a 
convection apparatus with closed ends. With this condition, the mean pressure 
gradient is also found to be zero. 

The boundary conditions for case (ii) can be obtained by considering higher-order 
terms in the expansion of ( 2 . 8 ~ - c )  about the mean levels. However, this approach 
has the disadvantage that the mean velocity is then found to be non-zero at  z = 0 and 
1.  This result is a natural consequence of the expansion procedure and occurs owing 
to inhomogeneous boundary terms arising a t  O ( P ) ,  as has been noted by Fung & 
Yih (1968) in their analysis of peristaltic transport. In order to present velocity 
profiles which vanish at the walls, we have introduced the transformation 

where 
(2.18 a )  

(2.18 b) 

so that the walls are now located a t  5 = 0 and 1. If we now take d and6 as independent 
variables, the conduction solution is given by {( g/AF) - [} and, if we let 

@,(a, 5) = 8,,(6) sin 2 + Olu(t) sin (2  +,Q, (2.19) 

the equations for and 6&) are found to be the same as the equations for 8&) 
and B,,(z), namely ( 2 . 1 3 ~ )  and ( 2 . 1 4 ~ ) .  Yl(Z,() is given by (Z. I lb) ,  (2.13b), (2.14b), 
and the boundary conditions are as given in (2.12a-c), all with 5 substituted for z. 

In  the d, 6 plane, closed cells similar to those shown in figures 1 (a)-(c),  will occur 
at O(6) but a mean current will be generated at O ( P )  and can be obtained by averaging 
with respect to 2 in this plane. The mean flow is governed by the equation 
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We note that the inhomogeneous terms will be zero for case (ii) under the same con- 
ditions on /?, L and U as given already for case (i). 'In comparing ( 2 . 2 0 )  with ( 2 . 1 6 b ) ,  
we note that, while e, in (2.166) is produced solely by nonlinear advective terms 
proportional to Pr-1, q2 in ( 2 . 2 0 )  is also forced by terms arising from the variable 
geometry which are independent of Pr. This distinction in the forcing of the mean 
flows for the two cases remains true even after transforming back to the physical 
P, z plane for case (ii). 

The equation for the mean temperature field in the 2,  [ plane is 

(2 .21)  

which can be compared to (2 .15  b ) .  The boundary conditions are 

- d e  - 
Y - - ' = O 2 = 0  at c = O , I .  (2 .22)  '- d c  

For case (i), the mean heat transfer to  the fluid at the lower boundary is 

(2 .23)  

where K is the thermal conductivity. The mean Nusselt number is then, to 0(62), 

(2 .24)  

For case (ii), somewhat more care must be taken in defining N u  owing to the fact that 
the 2, [ co-ordinates are not orthogonal. If n is a unit vector normal to the lower 
boundary and pointing into the fluid, we have 

If we define f = z - &(x) ,  then 
V f  k - i ( d & / d x )  n=-- 

lVfI - (1 + (dChW2}*' 

(2.25)  

(2 .26)  

where i and k are unit vectors in the x and z directions, respectively. The local heat 
transfer rate is then 

or, using P and [ as variables, 

(2.27a) 
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FIGURE 2. Mean Nusselt number at lower boundary as a function of Rayleigh number (Ra) and 
phase angle (p )  with k = k, = 3.117; (a)  case (i), (6) case (i i) .  
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Rn= I200 
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dF,id: 

FIGURE 3. Mean velocity profiles at 0(a2) for case (i) for Pr = 0-027, 
/3 = in and various Rayleigh numbers. 

After setting & = 6L sin 2, substituting the expansion of 6, and averaging, we get 

For case (i), the Nusselt number (2.24) approaches unity as Ra+ 0 because then 
tends to zero [cf. (2.136)) (2.14b)I and so also does 8, [cf. (2.15)]. This occurs because 
we have scaled the boundary variation on the basis of AT and so, as AT-+O, the 
conduction state is obtained. For case (ii), a Nusselt number defined by (2.28) would 
not approach unity as Ra-tO because (2.28) then gives the heat transferred by con- 
duction between wavy, rather than plane, boundaries. In  order to present results for 
both cases in a uniform manner, we define a mean Nusselt number for case (ii) as 

Nu = (OH/ K A T )  / (QH/KAT),,=,, (2.29) 

where @ is evaluated at  5 = 0. 

Plots of Nu, as defined by (2.24) and (2.29) to O ( P ) ,  are given in figures 2 (a) ,  (b)  in 
terms of the quantity ( N u  - I ) / P  for various values of /3 and Ra.  The solid curves are 
for L = U = 1, whereas the dashed curve is for L = 1, U = 0 (or vice versa). 
To 0(62), the results are independent of the Prandtl number. The mean heat transfer 
is strongly dependent upon Ra,  even for Ra < Ra, = 1707.8. It is also strongly 
dependent upon p and for case (i) is clearly a maximum for = 0 and a minimum 
for p = n. In  the quasi-conduction regime, the heat transfer is proportional to the 
lowest-order motion induced by the horizontal temperature variation via the baro- 
clinic effect. The vorticity generated by this means is proportionad to V p  x V T ,  where 
the pressure p can be approximated a t  lowest order by the hydrostatic pressure. 
When this vector product has the same sign over most of a vertical section, the induced 
flow will be greatest and will affect N u  most strongly. Because V p  is nearly a vector 
of constant magnitude pointing downwards for a Boussinesq fluid, aT/ax should have 
the same sign over the range of z in order to maximize &, i.e. the temperature 
variations should be in phase, as the numerical results given in figure 2 ( a )  indicate. 
For case (ii), the situation is more complicated, and the phase angle for maximum 
Nuis found to be a function of Ra,  as figure 2( b )  indicates. 

As might have been anticipated by the appearance of sin ,8 in (2.16 b) ,  the mean flow 
is a maximum for case (i) when /3 = &T or $n for fixed Ra and Pr. The profile of the 
mean flow for case (i) is given in figure 3 for various values of Ra,  Pr = 0.027, and 
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FIGURE 4. Maximum mean velocity at O(Sz) for caae (i) aa a 
function of Rayleigh (Ru) and Prandtl (2%) numbers. 
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Y z, = S sin .Y 

FIGURE 5. The open-ended circulatory flow at O(S2) for case (ii) for S = 0.1, 
/3 = 90°, Pr = 0.025 and Ra = 1000 (k, = 3.117). 

,5 = &r. For ,5 = in, the sense of circulation should be reversed. As the figure indicates, 
the mean flow increases in magnitude as Ra increases. This is shown more clearly 
in figure 4, where the maximum value of dT’,/dz is plotted as a function of Ra and Pr 
for case (i). 

For case (ii), care needs to be taken in defining a ‘mean’ flow. In  the strict sense, 
there is no absolutely x-independent flow, owing to the variation in height along the 
channel. However, we can ask how the mean flow in the x, 6 plane is transformed 
into an ‘open-ended’ but x-dependent cell in the x, z plane. This is done simply by 
plotting dT’,/df,  as obtained from (2.20), in the r, z plane by use of the relation 

(2.30) 

for constant 5. A typical mean velocity distribution is given in figure 5 for Pr = 0.025. 
Although the velocity maximum does not change with 2, the profile becomes fuller as 
fluid moves int,o narrower regions. The maximum value of the ‘mean’ velocity is 

= 5r(4 + 5 T W  6, 
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0 400 800 1200 
Ro 

FIGURE 6. Maximum value of ' mean' velocity at O(S2) for case (ii) as a 
function of Rayleigh (Re) and Prandtl (Pr)  numbers. 

shown in figure 6 as a function of Ra and Pr. The location of the maximum occurs 
closer to the wall as Pr increases. Note that typical values of the maximum streaming 
velocity are much larger in case (ii) than in case (i) for large Pr ref. remarks after 
(2.20)]. 

3. The critical regime 

introduced heuristically in 5 1 suggests the expansions 
We now consider the case when k z k, = 3.117 and Ra N Ra, = 1707.8. The scaling 

ti(%, 2 )  = O&) + SfOg(k, 2 )  + SSO,(S, 2 )  

qz, 2 )  = M y z ,  2 )  + S%Ys(Z,z) 

+SO,(k,Z) + ..., 

+ &Y,(Z,z) + . . . , 
Ra = Ra,+S%Ra,+ ..., 

( 3 . 1 ~ )  

(3.16) 

( 3 . 1 ~ )  

and k = kc+Sjkq+ ... . (3.ld) 

Similar expansions have been developed by Tavantzis et al. (1978) in a more systematic 
manner, via the method of matched asymptotic expansions. 

The expansion of the wavenumber ( 3 . l d )  allows us to investigate the effects of de- 
tuning the forcing within an O(6f)  range. Although some results will be given later 
in this regard, the actual equations become very complicated for k 4 kc and will be 
given only for k = kc. 
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In  (3.1 a) ,  0, is the conduction state for plane boundaries, and @* and @% correspond 
to solutions of the classical Rayleigh-BBnard stability problem, carried out to second 
order in the amplitude (i.e. the homogeneous boundary-value problem of Malkus & 
Veronis 1958). It seems unnecessary to present the details of that analysis; suffice 
it to say that we represent the solutions (with an asterisk denoting a complex conjugate) 

(3.2a) 

@&f, z )  = iOg(z) [A+ exp (iz) -A! exp ( - iz)] ,  (3.2b) 

Yt(2, z )  = -i@%(z) [(A$)Zexp (2%) - (AT)Zexp ( -  2 i f ) ] ,  
and 

( 3 . 2 ~ )  

+ O f ( z )  [(A*)2exp (2 i2 )  + (Ag)2exp ( - 2iz)I. (3.2d) 

The equations for 0, and Y, are then 

and 

The non-uniform boundary conditions appear only a t  this stage of the analysis and 
are the same as (2.7a-c) and (2.10a-b), namely, 

O,(z,O) = Lsinz, 0,(53,1) = Usin(?+,!?), (3.4a) 

(3.4b) 

To this order, therefore, the resonant solution does not depend on whether the non- 
uniformity arises from spatial temperature or gap variations. 

We again redefine 0, so as to obtain homogeneous boundary conditions; let 

O,(Z, z )  = 01(2, z )  + (1 - z )  L sin + z U sin (2  + p). (3.5) 
If we let 

8,(2, z )  = iO,,(z) exp (iz) +iO13(z) exp (3id) +complex conjugates, 

Y,(z, z )  = Qll(z) exp (iz) + Q13(z) exp (3%) +complex conjugates, 

( 3 . 6 ~ )  

(3.6b) 

then the equations for O,, and @,, are 

d2B,1 - k: 011 - kc @,, = - $k:( 1 - z )  L - $k:zU exp (i,!?) + kclA4]2A, F(z ) ,  (3.7a) dz2 
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and 

(g - Ql1 + k,  Ra, Olr 

= - k, R q  A ,  0, + &Ra,[L(l -2) + Uzexp (ip)] + k,Pr-11A412A)G(z), 
(3.7b) 

where 

(3.7c) 

Consider the homogeneous adjoint system given by 

A 

( 3 . 8 ~ )  
d28 A - -k:B-k,Ra,@ = 0, 
dz2 

where 

( $ - k : ) , 6 + k C 6 =  0, 

A d 6  
dZ 

8 = @ = -  = O  a t  Z = O , I .  

(3.8b) 

( 3 . 8 ~ )  

If we multiply ( 3 . 7 ~ ~ )  by 8( = O + ) ,  ( 3 . 7 b )  by &( =@l/Ra,) ,  integrate both equations 
from z = 0 to 1 and then subtract one resulting equation from the other, we obtain 
the following solvability condition: 

By making use of the symmetry of 8 and 6, it is easy to see that the terms in curly 
brackets on the right-hand side of (3.9) are equal. Hence, after evaluating the various 
integrals, and including now terms representing the wavenumber variation, we can 
express (3.9) as 

~$[~lI~)12-(Rw~/~ac)+I,(k&llc,)21 = [L+ uexP(im13,  (3.10) 

where I, = 1.435 and I3 = 0.144. Only Il is dependent upon Pr and ranges between a 
value of 13.05 for Pr = a to  222.7 for Pr = 0.027. Various checks were made on the 
accuracy of the numerical computations. For instance, the linear terms on the left- 
hand side describe the shape of the known neutral curve near Ra = Rw,, k = kc. Also, 
for k+ = L = U = 0, the remaining terms can be used to compute a Nusselt number, 
which was compared with the results given by Clever & Busse (1974). Finally, all the 
integrals were evaluated numericallv for stress-free boundary conditions, for which 
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FIGURE 7. The dependence of the function A upon ,I3 and ( U / L ) .  

case an analytical solution is possible (I, = $79, Iz = 4 and I6 = &- for that case). 
Satisfactory agreement was found in all the comparisons. 

We note for L + 0 that we can also write the complex term on the right-hand side 
of (3.10) as 

( 3 . 1 1 ~ )  L + U exp (ip) = L{ 1 + 2( U / L )  cosp + (U/L)2}3 exp (ih) 

= LAexp (ih), 
where 

U sinp 
L + u cosp.  

tanh = (3.11 b)  

For p = 180" and L = U ,  A = 0, and the forcing drops out of the solvability condition 
(3.10). Hence, for equal amplitude but antisymmetric forcing, the forcing has no 
effect on the convection to the order considered. In  order to investigate the general 
case, we let 

A )  = & exp(i4,  (3.12) 

and obtain the following relation for 1Aa-l: 

k IA+I[IlIA)lZ- (Rap/%) + I 2 ( k + / W I  = LAI3- (3.13) 

The & sign is included because, for LA = 0, we have 

IAg12R-B = IT1{(Rq/R4 - Iz(kq/lc,)2), (3.14) 
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-0 8 -  

FIGURE 8. The amplitude of convection A+ vs. (Ra-  Ra,)/SfRa, 
for infinite Prandtl number (k = k ,  = 3.1 17). 
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LA= 1 
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S' Ru< 

L A =  I L A = ?  

FIGURE 9. The amplitude of convection A )  vs. (Ra-  Ra,)/S*Ra, 
for Pr = 0.027 (k = k, = 3.117). 

and the minus sign simply represents a phase shift of 180" of the convection roll relative 
to the case of the plus sign. For LA $. 0, it is clear that, with the plus sign, the amplitude 
IAil is always greater for supercritical Ru, than for the case with LA = 0, whereas 
the reverse is true for the minus sign. Say that we consider the case when ,8 = 0 or 
U = 0. This result then says that the solution which is in phase with the forcing has a 
greater amplitude than a solution which is 180" out of phase, which seems quite 
reasonable. Note that the out-of-phase solution can exist only if Ru > Ru, for LA + 0. 

We choose to  plot IA+l as a function of LA, even though this parameter depends 
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FIGURE 11. The Nusselt number near Ra, for resonant forcing for AL = 2 and 
various Pr (dashed curve is for stress-free boundary case, all Pr) .  
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upon L, U ,  and p, because it is an effective amplitude of forcing. The parameter A 
is shown as a function of U / L  and p in figure 7. Although A is a minimum for all 
values of U I L  > 0 a t  p = 180", it  is actually zero only for U / L  = 1.  It is a maximum 
always €or p = 0 if U + 0; for U = 0, the effect of phase angle drops out, as it should. 

Plots of IA+l as a function of the Rayleigh number and LA are shown in figure 8 
for Pr = co and in figure 9 for Pr = 0.027. These plots show clearly the features of the 
solutions discussed in the penultimate paragraph but also reveal that three solutions 
exist in general, a point to which we shall return shortly. 

Prom an experimental viewpoint, the behaviour of the Nusselt number near 
Ra = Ra, with 6 $. 0 is of special interest because a sudden change in the slope of 
t'he Nusselt number versus Rayleigh number curve is usually used as the criterion 
for the critical Rayleigh number. To the order considered, the mean Nusselt number 
a t  the lower boundary (for either case) is 

(3.15) 

The quantity (Nu- 1)/6) is plotted in figure 10 for AL = 1 (e.g. L = 1, U = 0) and 
in figure 11 for AL = 2 (e.g. L = U = 1, p = 0") for various values of Pr, using the 
solution with the greatest amplitude. For AL = 2, Pr = co, and 6 = 0.01, the Nusselt 
number at Ra, = 1707.8 is 1.044 versus unity for 6 = 0. Remembering that 6 is a 
measure of the non-uniformity relative to A!? (which is usually of the order of a few 
degrees), we can see how non-uniformities can make a precise determination of Ru, 
rather difficult in an experiment, owing to the amplification of small imperfections as 
Ra -+ Ra,. The actual non-uniformity could be more general than sinusoidal, and the 
present results would still apply, as long as the Fourier representation of the non- 
uniformity contains a component with k = k,, as shown by Tavantzis et ul. (1978). 
The amplitude of the Fourier component associated with k, would then correspond 
to 6. I n  a carefully controlled experiment Ahlers (1975) has found a smooth transition 
of the type shown in figures 10 and 11.  

obtained from the expansions for both the quasi- 
convection and critical regimes with 6 = 0.1 is shown in figure 12. Again, the solution 
with the greatest amplitude is used. The curves for each regime merge smoothly. 
This figure suggests that one way of defining criticality in an experiment is to note 
the point a t  which the curvature of the Nusselt number curve changes sign. This 
would seem somewhat preferable to a criterion that the Nusselt number be above 
unity by some arbitrary amount. 

We now return to the matter of the multiple solutions which can exist for sufficiently 
large R a ,  as evidenced by figures 8 and 9. These figures can be viewed as giving a quasi- 
steady estimate of the amplitude of convection for given LA as Ra increases slowly 
from Ra < h?ac to Ra > Ra,. From this point of view, only the solution with the 
largest amplitude [corresponding to the positive sign in (3.13)] would seem a t  first 
t,o be the physically relevant solution, in t'he sense that only it can evolve from a 
subcritical state. We explored the matter by introducing a slow O(61) time scale into 
the amplitude equation and then solving for the time-dependent amplitude on the 
basis of an initial-value problem, as Ra increases with time. Even with initial con- 
ditions corresponding to negative A&, the solution always evolved towards the upper 
curve in figures 8 and 9 as Ra approached Ra, from below. Nonetheless, the other 

The composite result for 
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0 0 50 1 0  1.5 

FIGURE 12. Composite Nusselt number curve for 6 = 0.1, A L  = 1, k = k, = 3.117. 

Ra, Ra, 

solutions could occur if the evolving solution becomes unstable for Ra greater than 
Ra, by some amount. For this reason, it is worth considering $he relative stability 
of the solutions. 

In  order to investigate the matter, we introduce the slow time scale r = d’tt and 
consider the equation [cf. (3.10)] 

(3.16) 

where u = (Rq/Ra,) and 2 = LRI, are both understood to be real and positive and 
where the subscript 3 has been dropped. If we let A = Aexp (ih),  the equilibrium 
states are given by 

A:- (u/I1)Ae- ( f , / I J  = 0. (3.17) 

For f, = 0, we have the two non-trivial solutions Je,o = (u/Il)z. For 2 $. 0, know- 
ledge of the characteristics of roots to a cubic equation allows us to say that three 
real, distinct roots exist if 

(a/31,)3 > (2 /211)2 ,  (3.18) 

which we assume to  be true. By expanding in terms of 2 for 2 sufficiently small, we 
find that two of the solutions to (3.17) are 

(3.1%) 
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FIGURE 13. Schematic diagram of the three supercritical equilibrium solutions. 

and 

(3.19 b) 

Note that 
conduction solution when t = 0 and is 

> IAe,ol and IAe,21 < IA^e,ol. The third solution corresponds to the 

4 , s  2: - q c r .  ( 3 . 1 9 ~ )  

The three possible solutions are sketched qualitatively in figure 13, which can be 
compared with figure 8. 

A 

In  order to consider the stability of the equilibrium states, we let 
0. 

A j ( r )  = exp (ih) + u j ( r ) ,  (3.20) 

where j = 1, 2, or 3 and uj is a small perturbation to the equilibrium state, which we 
take in the form aj = tijexp ($+a?), where a: = a,+iai. By substituting (3.20) into 
(3.16), linearizing the resulting equation, and collecting terms proportional to cos ai r, 
we can obtain 

(3.21a) 

(3.21b) 

A 

a:., = cr-ll(Ae,j)2{l + 2 cos2 ( A  - $)}, 
a,. = 11(Ae,j)2sin 2 (q5 - A ) ,  

,. 
whereas collecting terms proportional to sin ui T yields 

a, = cr - I~(A~,~)~{I + 2 sin2 ( A  - $)I, ( 3 . 2 2 ~ )  

a:,. = I,(Ae,j)2sin2(A-$). (3.22 b) 

ISccause (AeJ2 > (Ae,J2 = (cr/Il), we obtain the result that a., < 0 for the disturbance 
t i l  for all values of A and q5. Hence the solution corresponding to A^e,l, i.e. the solution 
\I it,h the great'est amplitude, is stable, at least to a disturbance with the same wave- 

limber. In order to determine its overall stability, we must, of course, consider a 

h 
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more general three-dimensional disturbance. Such an investigation would be part of 
determining the pattern of convection for Ra > Ra,, and we hope to pursue this 
analysis in the future. 

With regard to the solutions corresponding t o j  = 2 and 3, consider first the point 
at which they coalesce, i.e. when (c~ /31; )~  = (z/211)z. At this point, one can easily 
show that 

= = (z/211)f = cT/311. (3.23) 

From (3.21a), we have then 
20- 
3 

a, = - { 1 - cos2 ( A  - $)}, (3.24) 

which says that the state is unstable as long as the disturbance is not in phase or 180" 
out of phase with the equilibrium state. An analogous result comes from consideration 
of ( 3 . 2 2 ~ ) .  For a larger value of u, such that (3.18) is satisfied and A,,is distinct from 

(Ae,2)2 > cT/3'1, (Ae,3IZ < fl/311- (3.25) 

We can conclude immediately that the solution corresponding to &,3 is unstable for 
all values of q5 beca,use the growth rate of the disturbance a3 is, according to (3.21a), 

we have 

20- 
3 

a, > -{(1-cos2(A-q5)} 2 0. (3.26) 

With regard to  the maximum value of the growth rate corresponding to a, is 

( a r ) m a x  = c- 11(Je,2)~. (3.27) 

Because is also unstable. 
In  contrast to  the state however, the phase of the disturbance is now of 
importance. 

We can therefore conclude that the solution corresponding to Ae, is the only stable 
equilibrium solution. Daniels (1 978) has made a similar conclusion for the case with 
non-adiabatic end-wall boundary conditions. 

< (Ae,J2 = (:/Il), (ar)max > 0,  and so the state 

The work of D. Pal has been supported in part by the U.C.L.A. Academic Senate 
and by an N.S.F. Energy Related Graduate Traineeship. R.E.K. is grateful to A. 
Craik for a helpful comment. 

Appendix 
0 is 

then the solution of (2.6), only the conduction solution can be obtained from (2.5) 
{which, of course, is zero for case (i)). This uncoupling occurs because we scaled both 
the mean field and the forced field on the basis of AT. If the temperatwe modulation 
is held fixed as AF+O, then we must scale differently so that the equations remain 
coupled and retain the physics. The necessary transformation is 

As Ra+O in (2.5) and (2.6), the equations become uncoupled. Because Y 

0 = ( P b / A F ) 6 ,  (A 1)  

where Th is some reference boundary temperature (say, if q, = 0) .  When substituted 



454 R. E. Kelly and D .  Pal 
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R% 
FIGURE 14. Mean Nusselt number for AT= 0 as a function of Rayleigh number Ra, based on 
reference boundary temperature and phase angle /3 for k = 3.117; solid lines are for T I =  pu = pb, 
whereas dashed line is for p,= Po, Pu = 0 (or vice versa). 

into (2.51, (2.6)) the linear term representing vertical advection of the mean tem- 
perature field vanishes as AT-+ 0, and the Rayleigh number becomes one (Ra,) based 
on Fb (to interpret this Rayleigh number physically, we should write it as (Baa)/& 
where Ra, is a Rayleigh number based on the characteristic horizontal temperature 
variation 6 T b  and where it is understood that this ratio remains finite as 640). 

The solution for 4 and T can then be obtained by expanding in the manner of 
(2.9a, b ) ,  after setting AT = 0. The analysis is then so similar to that given in 5 2 that 
the details are omitted. For case (i), the mean Nusselt number is given in figure 14 
as a function of Rab( = Ra,/6) for various phase angles. The O ( P )  mean flow has a 
profile similar to that given in figure 3. The maximum mean velocity for case (i) is 
plotted in figure 15 as a function of Rub for p = &r, which again is the phase angle for 
the strongest streaming. Other results for the case = 0 have been given by Salstein 
(1974). 
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I I I I I 

Rfl, 
FIGURE 15. Maximum mean velocity at  O(S2)  for case (i) when AT= 0, as a function 

of horizontal Rayleigh number Ra,  and Prandtl number with p = in-. 
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